

**Kinematics Part-4/4** 



Robert Millikan received the Nobel prize for physics in 1923 for his investigations into the elementary charge of electricity.

**MILLIKAN** 

1. A car travels at a constant velocity of 100 km/h for 30 minutes. Determine: (\$\infty\$ Note: Express the velocity in km/h)

a) The initial velocity

100 km/h

b) The final velocity

100 km/h

c) The average velocity

100 km/h

d) The distance traveled

50 km

e) The acceleration

0

f) In a velocity vs time graph, what does the slope represent?

Acceleration

g) In a velocity vs time graph, what does the area under the curve represent?

Distance traveled

- h) Plot the velocity vs time for the car.
- i) What is the slope of the curve you plotted?

0

j) What does the slope of your curve represent?

Acceleration



- 2. Starting from rest, a vehicle accelerates uniformly at a rate of 10 m/s<sup>2</sup> for 12 s. Determine the following: (\$\infty\$ Note: Express the velocity in m/s)
  - a) The initial velocity

b) The final velocity

120 m/s 
$$a = \frac{\Delta v}{t} \text{ or } a = \frac{v_f - v_i}{t}$$

$$\therefore v_f = at + v_i = (10 \text{ m/s}^2)(12 \text{ s}) + 0 = 120 \text{ m/s}$$

c) The average velocity

60 m/s 
$$v_a = \frac{v_f + v_i}{2} = \frac{120 \text{ m/s} + 0}{2} = 60 \text{ m/s}$$

d) The distance traveled

**720 m** 
$$s = v_a t = (60 \text{ m/s})(12 \text{ s}) = 720 \text{ m}$$

e) The acceleration

$$10 \text{ m/s}^2$$
 (Given)

f) In a velocity vs time graph, what does the slope represent?

## Acceleration

h) In a velocity vs time graph, what does the area under the curve represent?

## Distance traveled

h) Plot the velocity vs time for the car



i) What is the slope of the curve you plotted?

10

- 3. Starting from rest, a vehicle accelerates uniformly at 12 m/s<sup>2</sup>. After 10 seconds, calculate:
  - a) The final velocity.

$$a = \frac{\Delta v}{t} \text{ or } a = \frac{v_f - v_i}{t}$$

$$\therefore v_f = at + v_i = (12 \text{ m/s}^2)(10 \text{ s}) + 0 = 120 \text{ m/s}$$

b) The average velocity.

$$v_{a} = \frac{v_{f} + v_{i}}{2} = \frac{120 \text{ m/s} + 0}{2} = 60 \text{ m/s}$$

c) The distance the car traveled.

$$s = v_a t = (60 \text{ m/s})(10 \text{ s}) = 600 \text{ m}$$

**4.** Starting from rest, a truck reaches a speed of 50 km/h in 10 seconds. What is the acceleration of the truck in km/h/s?

$$a = \frac{\Delta v}{t} = \frac{v_f - v_i}{t} = \frac{50 \text{ km/h} - 0}{10 \text{ s}} = 5 \text{ km/h/s}$$

- 5. A vehicle traveling at 45 m/s accelerates for 5 seconds to a speed of 60 m/s. Find:
  - a) The average velocity.

$$v_a = \frac{v_f + v_i}{2} = \frac{60 \, m/s + 45 \, m/s}{2} = 52.5 \, m/s$$

b) The distance it traveled during the acceleration.

$$s = v_a t = (52.5 \text{ m/s})(5 \text{ s}) = 262.5 \text{ m}$$

- **6.** Starting from rest, an object is given an acceleration of 5 m/s<sup>2</sup> for 3 seconds. Determine:
  - a) Its speed at the end of the three seconds.

b) The distance traveled during the *second* second.

Note: During the sec ond sec ond means from 
$$t_i = 1 s$$
 to  $t_f = 2 s$ 

At  $t_i$ ,  $v_i = 5 \text{ m/s}$  and at  $t_f$ ,  $v_f = 10 \text{ m/s}$ 

Since,  $v_a = \frac{v_f + v_i}{2} = \frac{10 \text{ m/s} + 5 \text{ m/s}}{2} = \frac{15 \text{ m/s}}{2} = 7.5 \text{ m/s}$ 
 $\therefore s = v_a t = (7.5 \text{ m/s})(1 \text{ s}) = 7.5 \text{ m}$ 

7. The following graph represents the *distance-time* curve of a cart. With reference to this graph, answer the questions below:



- a) The distance at time t = 2 s.
- b) The distance at time t = 4 s.
- c) The distance at time t = 6 s.
- d) The distance at time t = 10 s.
- e) The distance at time t = 15 s.
- f) The velocity at time t = 1 s.
- g) The velocity at time t = 3 s.
- h) The velocity at time t = 7 s.
- i) The velocity at time t = 10 s
- j) The velocity at time t = 14 s.



**8.** Using the distance-time graph from the previous problem, sketch the *velocity-time* curve of the cart.



**9.** Starting from rest, the motion of a vehicle has the following *acceleration-time* graph. With reference to this graph, sketch the *velocity-time* curve of this vehicle.



